Pytorch
2024. 7. 15. 16:15ㆍCNN, RNN, LSTM
✅ Pytorch

✅ Pytorch를 활용해야 하는 이유






import torch
from torch import nn
fromtorch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

# 공개 데이터 셋에서 학습 데이터를 내려 받습니다.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# 공개 데이터 셋에서 테스트 데이터를 내려 받습니다.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)


batch_size = 64
# 데이터 로더를 생성합니다.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W] : {X.shape}")
print(f"Shape of y : {y.shape} {y.dtype}")
break

# 학습에 사용할 CPU나 GPU, MPS 장치를 얻습니다.
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device")
# 모델을 정의합니다.
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten() # 1차원 형태로 변경
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)


loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader): # enumerate -> 인덱스가 같이 사용
X, y = X.to(device), y.to(device)
# 예측 오류 계산
pred = model(X)
loss = loss_fn(pred, y)
# 역전파
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")


torch.save(model.state_dict(), "model.pth") # 확장자 -> pth, model -> 파일 이름
print("Saved PyTorch Model State to model.pth")


model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth"))


classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
x = x.to(device)
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')


import torch
import numpy as np

data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
print(data)


np_array = np.array(data) # type이 ndarray
x_np = torch.from_numpy(np_array) # type이 tensor
print(type(x_np))


x_ones = torch.ones_like(x_data) # x_data의 속성을 유지합니다.
print(f"Ones Tensor: \n {x_ones} \n")
x_rand = torch.rand_like(x_data, dtype=torch.float) # x_data의 속성을 덮어씁니다.
print(f"Random Tensor: \n {x_rand} \n")


shape = (2, 3,)
rand_tensor = torch.rand(shape)
ones_tensor = torch.ones(shape)
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")


tensor = torch.rand(3, 4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")


# GPU가 존재하면 텐서를 이동합니다
if torch.cuda.is_available():
tensor = tensor.to("cuda")
print(tensor.dtype)


tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)


t1 = torch.cat([tensor, tensor, tensor], dim=0) # dim = 1 -> 가로, 0 -> 세로
print(t1.shape)


# 두 텐서 간의 행렬 곱(matrix multiplication)을 계산합니다. y1, y2, y3은 모두 같은 값을 갖습니다.
# ``tesnsor.T``는 텐서의 전치(transpose)를 반환합니다.
y1 = tensor @ tensor.T # M*N N*M => M * M(정사각형)
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)
# 요소별 곱(element-wise product)을 계산합니다. z1, z2, z3는 모두 같은 값을 갖습니다.
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)


agg = tensor.sum()
# print(agg)
agg_item = agg.item()
print(agg_item, type(agg_item))


print(f"{tensor} \n")
tensor.add_(5)
print(tensor)


t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")


t.add_(1)
print(f"t: {t}")
print(f"n: {n}")


n = np.ones(5)
t = torch.from_numpy(n)



import torch
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)

labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
sample_idx = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_idx]
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis("off")
plt.imshow(img.squeeze(), cmap="gray")
plt.show()


import os
import pandas as pd
from torchvision.io import read_image
class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file, names=['file_name', 'label'])
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label


def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform

def __len__(self):
return len(self.img_labels)

def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
sample = {"image": image, "label": label}
return sample

from torch.utils.data import DataLoader
train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=False)

# 이미지와 정답(label)을 표시합니다.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

'CNN, RNN, LSTM' 카테고리의 다른 글
PC (0) | 2024.07.23 |
---|---|
자연어 처리 - 토큰화(Tokenization) (0) | 2024.07.17 |
문자 단위 RNN (Char RNN) (1) | 2024.07.16 |
순환 신경망 (0) | 2024.07.16 |